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1. Introduction

Fire safety is an important concern in our daily lives and it plays a special role in the human

presence in space. In a spacecraft, the outside environment is hostile and the opportunity to

escape is small. Rescue mission is difficult and time consuming. As a result, we should avoid the

occurrence of fires in spacecraft as much as possible. If a fire occurs, we need to keep it small

and under control. This implies that the materials used on board the spacecraft should be

screened carefully, all the machines and devices need to be operated without accident, fire

detectors have to function properly. Once a fire is detected, it can be extinguished quickly and

the cabin can be cleaned up to restore operation and sustain life.

2. Special Features in Spacecraft Environment

Although we may agree with the above strategy in dealing with potential fires in

spacecraft, there are a number of technical issues that hinder its implementation. These are

related to the special spacecraft environment which include:

(a) Microgravity. Gravity influences fire in a fundamental manner. Our previous knowledge on

fire and fire fighting are all from the experience on earth. Some of these may not be readily

applicable to the microgravity environment in the spacecraft.

(b) Flow condition. Although the buoyant-induced flow from flame is negligible, ventilated

flows,exist in manned spacecraft. These are purely forced flow with velocities varying from a

fraction of one cm/s to several tens of cm/s depending on the locations. The flow velocities,

especially in the lower portion of this range, are below the buoyant induced velocity around

flames in normal gravity. The flame behavior in these low-speed forced flows can be quite

different from what we know from the buoyant terrestrial fires.

(c) Atmosphere. The nominal atmosphere in the International Space Station Alpha and

the U.S. Space shuttles is standard air (21% 02 and balanced with N2 at one

atmospheric pressure). However, this manufactured 'air' can have a fluctuated

oxygen percentage. For example, in the Russian space station Mir, the reported 02
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percentage has been as high as 25%. Combustion behavior is highly sensitive to the

oxygen percentage. In addition, to prepare for the space walk, astronauts will be exposed to

30% 02 for a period of time.

3. Microgravity Combustion Research relevant to Spacecraft Fire Safety

One of the major uncertainty in implementing the spacecraft fire safety strategy is the

lack of a more complete understanding of the flame behavior in the absence of gravity. In

particular, how is the combustion behavior in microgravity different from that in normal gravity?

A few selected examples are given below to illustrate the differences.

(a) The existence of low-speed flammability limit. It is well known that diffusion flames

cannot be sustained in an air stream when the air velocity is too large. This high-speed blowoff

limit is the result of insufficient residence time in the flame stabilization zone. When the air

velocity becomes too small, e.g. of the order of a couple of centimeters per second, the flame

may also go out [1]. This low-speed extinction limit is due to too large a radiative heat loss

compared with the combustion heat release, a consequence of decreased convective flow [2-5].

At an intermediate flow velocity, the solid material is the most flammable (i.e. has the lowest

limiting oxygen index or needs the greatest amount of suppressant to extinguish). This most

flammable flow velocity is estimated to be around 5-10 cm/s. This is within the air ventilation

flow regime in the spacecraft but lower than the buoyant-induced flow in a flame in normal

gravity. Therefore, a material that is not flammable in a normal gravity test can be flammable in

a spacecrat_. This has a profound implication to material screening which, for all practical

purpose, has to be carried out in a terrestrial environment.

(b) The existence of the low-speed extinction limit, however, suggests that if a fire is

detected, the ventilation flow should be turned off. This is indeed the present proposed procedure

in the spacecraft operation. Note that by turning offthe flow the spread of smoke will also slow
down.

(c) The amplification of the influence of flame radiation in microgravity produces a number

of trend reversal phenomena between normal- and micro-gravity [6,7]. These include: the

ranking of material flammability index [8], the relative effectiveness of the fire suppressants

[9,10], the reversal of flame spread rates [9,11 ] and the crossover between concurrent and

opposed flow spreads [12,13]. These trend reversals prevent a straightforward extrapolation of

the normal gravity data to spacecraft environment. A better scientific understanding of these

phenomena is needed for an intelligent application of the material screening process, for the

selection and the application of the suppressants and for the design of fire fighting procedures.

(d) The lack of buoyancy also affects the material ignition characteristics. Before a gas-

phase ignition to occur, a combustible mixture has to form. Instead of being dispersed by

buoyant convection, the hot pyrolyzed fuel vapor tends to stay close to point of heating in

microgravity. This accelerates the formation of a combustible mixture and a quicker ignition [9].

If the external heating of the solid is by a radiation source, the ignition delay will also be

shortened since there is less convective cooling in the microgravity [14].



(e) Smolderingin microgravityhasthepotentialto bemoreseriousthanin normal
gravity.Smolderingispromotedby moreoxygensupplyandlessheatloss.Low speedflow in
microgravityslowsdowntheoxygentransportbut alsodecreasestheconvectiveheatloss[15].
More researchis neededto seekout theneteffectof thesecompetinginfluences.

(f) Becauseof thedifferent travelhistoryof a particle,thesootformedin a
microgravityflamehasdifferent sizeandstructure[16].This mayaffectthesensitivityof thefire
detector.Furthermore,flame in microgravityundercertainconditionswill not producesoot.Its
effecton thefire detectionneedsto beevaluated.A relatedproblemis theplacementof the
detectorsandhow manyareneeded.Thesmokeandhotcombustionproductswill go
downstreamwith theforcedventilationflow in thespacecraft,not to theceilingas in normal
gravity.Canwemissdetectinga secondaryfire if theventilationis turnedoff?.

With theInternationalSpaceStationalreadyin orbit andanexpectedbusyactivity for the
next 15(atleast)years,weare lookingfor moreopportunitiesto performlonger-duration
microgravityexperiments.Someof thesewill havedirectbearingson fire safetyissuesin the ISS
andspacecraftbeyondtheearthorbit [17]. Fromascientist'spointof view, this type of research
is bothexcitingandrewarding.It isexcitingbecauseweareexploringtheunknowns-in
combustionregimesthat havelittle dataandthe resultsareveryottenunexpected.It is rewarding
becauseour effortmaymakeit saferfor thehumanexplorationin space.
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